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1/INTRODUCTION

This monograph discusses the torsional model development and modal calculations

for the cylindrical space vehicle system and also systems employing clustered tanks.

Relative importance of physical characteristics will be discussed as well as methods

used by the industry for the solution of modal parameters. Primary attention is focus-

ed on parameters important in control and stability analyses for which the system

frequency is generally below twenty cycles per second and quite often below ten cycles

per second. Application for loads analysis follows the same principals outlined here--

in but may require more detailed representation in areas where loads or deflections

can be critical. The models described will be concerned with gross vehicle torsional

motions and will not include the shell tangential deflection modes which do not contrib-

ute to gross vehicle control and stability. Related monographs describe lateral, lon-

gitudinal, and sloshing models. Stability and loads analytical methods using these

models and modal parameters are also subjects of other monographs.

The general approach for dynamic solutionsinvolvinglarge systems is to develop

a mathematical model describing the systemts mass and structure, calculateitsnor-

mal modes of vibration, and then, using normal mode theory, apply the external forces

and couple in the control system to obtaintotalresponse. The dynamic analysis is

then only as accurate as provided by the mathematical model representing the space

vehicle system; therefore, development of these models is of major importance in

dynamic analysis. Also, since these models are idealizationsand approximations of

the real system, the experience of an analyst in deciding which elements are domin-

ant contributes greatly to the successful representation of the system.

Space launch vehicles are primarily cylindrical structures comprised of propel-

lant tanks and interstage adapters. The rocket engines are attached to the propellant

tanks in a symmetrical pattern and the major payload structure and weight distribu-

tion is usually symmetric. This arrangement allows little, if any, coupling between

the lower longitudinal, lateral, and torsional modes. For liquid -vehicles, the effec-

tive mass considered in torsion is primarily structure and components, neglecting

liquid because of its limited shear resistance. As a result, the frequencies of the
torsional modes are usually well separated from the frequencies of the primary bend-

ing and longitudinal modes which consider the total vehicle mass. This frequency
separation, plus the vertical axis symmetry in the bending and longitudinal models,

and the symmetry of the structure, are reasons for the absence of significant coupling

between the modes. Also, since most vehicles are axis-symmetric with respect to

applied forces, such as aerodynamics and engine thrust, these are not significant

causes of torsion excitation.

Later in flight, as propellants are depleted, the modes can becomecoupled be-

cause of less frequency separation and the loss of axial symmetric weight distribution.



Thetorsional frequencies, usually greater than twenty cps, still remain outside of

control system interest. The only known torsional problems in cylindrical vehicles

are shocks and short duration periodic transients caused by engine transients or aero-

dynamic shock.

A good example is the transient at booster engine shutdown of the Atlas vehicle.

Engine pressure oscillations (about 60 to 70 cps) for a duration of about 10 cycles

results _n longitudinal input to the vehicle. This excites longitudinal, lateral, tor-

sional, and shell modes with frequencies in the same range. Since these are higher

modes and are not described well analytically (or experimentally), and also because

the coupling mechanism is difficult to define, this condition has not been satisfactorily

analyzed. It is known that the payload characteristics are contributors to the torsional

response since its stiffness and inertia distribution can cause a torsional mode fre-

quency to be in the 60 to 70 cps region.

Large diameter boosters, such as the Saturn V, will have torsional modes at lower

frequencies, below I0 eps, but will remain well separated from the lower lateral modes.

Coupling with longitudinal modes would only be a second order effect. With bending and

torsional frequencies reduced, but separated, it should be possible to design a control

system for stability of the bending and sloshing modes and keep the torsion modes out-

side of the control system frequency response range. Torsional loads again will only

be important if excitation in roll (peculiar to the system) exists.

The advent of clustered boosters introduces a new generation of torsional problems.

The torsional mode frequencies will not be separated from the lateral and longitudinal

mode frequencies and the configurations will usually be subjected to pronounced bendh_g-

torsion coupling. Torsional excitation will probably be induced through lateral excita-

tion and control system behavior and will require extensive torsion, torsion-bending,

and control system analyses.

The analysis of the torsional dynamics of a space vehicle requires the develop-

ment of a mathematical model to represent the characteristics of the actual vehicle

undergoing angular deformations about its longitudinal axis. In its simplest form, the

model is a set of mass inertias connected in series by rotational springs. By succes-

sive refinements, the model can be brought to represent all significant motions of the

vehicle. Such refinements can include branched systems to represent multiple load

paths, or special treatment for locally significant components.

The analyses of boosters with clustered tanks becomes more complicated for

several reasons: 1) the attaching structtwe is generally complex and, hence, is more

difficult to represent; 2) the structure requires more coordinates for adequate repre-

sentation, and 3) the possibility for coupled response forms (such as bending-torsion)

is increased. The analysis technique tbr a clustered booster is basically the same as

for the cylindrical tar&, however, the necessity for larger numbers of coordinates



can easily lead to excessive demands on computer storage capacity, which may pre-

cipitate a need for a compromise between the accuracy of results and the efficiency

and capability of present computer facilities.
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2/STATE-OF-THE-ART

The earliest applications of torsional vibration analysis will be found in the area of

rotating shaft machinery. The classical continuous solution has been used extensively,

as well as approximate numerical solutions. This subject has been studied so exten-

sively that handbooks (such as Reference 1) have been prepared to assist the mechani-

cal designer by providing numerous formulae for the calculation of moments of inertia

for flywheels, journals, couplings, ship propellers, gears and crankshafts; stiffness

formulae for shafts of uniform and tapered diameter, solid or bored shafts, slotted,

splined, rectangular, and asymmetrical shafts. Several different tabular and graphi-

cal methods of frequency determination have been developed, but most are variations

of the approximate analyses technique developed by Holzer.

Holzer's method (Reference 2) presents a technique for analyzing nonuniform

shafts that can be represented by inertias connected by clock springs. With the ad-

vent of electronic computers, very accurate torsional mode shapes and frequencies

can be obtained for systems which can be represented by interconnected springs and

inertias. Figure 2, Section 3, gives a comparison of uniform cantilevered shaft fre-

quencies obtained by the classic solution and the approximate solution using lumped

inertias and springs.

In aircraft design, the investigation of wing dynamics frequently requires the

analysis of a system coupled in torsion and bending.- The wing is represented by a

beam of variable stiffness with masses lumped at points eccentric to the beam elastic

center line. A full vibration analysis yields coupled mode shapes. The relative con-

tributions of bending and torsion to these mode shapes may be seen by noting that the

elastic center line deflection is unaffected by torsion and that torsion alone creates

the differences in deflections between the center line and the offset masses.

Torsion of cylindrical space launch vehicles has been treated by considering the

system as a series of lumped inertias connected by rotation springs. The spring

represents the torsional stiffness of the walls between inertia stations. The inertia,

for liquid vehicles, is the polar moment of inertia of the structure and components.

For solid motors, the inertia includes all of the propellant. The engine compartments

and payloads are described by equivalent springs and inertias, often obtained from

test data. The approximate methods of Holzer, matrix iteration, etc., are generally

used to obtain the modal quantities.

Vibration tests to determine torsional modes of this class of vehicle have not

been conducted, primarily because these modes are of no interest since they are

uncoupled from lateral and longitudinal motion, and because no major defined excita-

tion exists during flights. In the case of the Atlas transients at engine shutdown, a

vibration test was not justified because it would only describe modes and frequencies,

and not the coupling mechanisms causing the torsional response.



Thetorsional vibration of clustered vehicles has been considered by combining

bending and torsion in the mathematical model.

A superimposed normal mode torsional analysis, similar to the bending analysis

in Reference 3, has been used in analyzing torsional vibrations of Saturn vehicles for

the past three years. No description of the method has been published, however.

Milner (Reference 4) proves the uncoupling of torsional and bending modes for a bisym-

metric vehicle. In this analysis, the torsional modes of a center beam which consists

of the upper stages and the center tank of the booster are coupled with the bending

modes of the outer tanks. Torsional modes of the outer tanks are neglected since the

energy content of these modes is small and the frequencies are above the region of
interest.

Agreement of predicted modes with dynamic test data is generally good. However,

some unnecessary limitations exist in the present model which limit the usefulness.

For example, only one bending mode of the outer tanks is included in the present model,

limiting the results to frequencies below the second mode of the outer tanks. A major

limitation on checking accuracy of the method has been the problem of estimating accur-

acy of the input torsional data.

The coupling of outer tank bending and center tank torsion has also been consider-

ed in the analysis of Titan mc (Reference 5).
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3/MODEL REQUIREMENTS AND RECOMMENDED PROCEDURES

The solution of dynamics problems requires first, the formation of the governing

equations, second, their solution to yield dynamic characteristics (eigenvalues, elgen-

vectors), and, finally, the calculation of system response to external load through the

use of the modal information.

The governing equations are developed through consideration of equilibrium re-

quirements or energy relationships. To illustrate the basic technique of developing

these equations, the simple torsional system of Figure i will be considered. The dis-

placement of each mass inertia is defined by e1, e2, e3.

713

k 3 k 2

Z

I

Figure 1. Simple Torsional System

In a deformed position, all the internal forces of the system are readily determined.

The internal moment developed in the spring k I acts on 11 as -kl ( ()1 - {)2), and on 12

as k I (e I - {)2)" Similarly, the internal moment developed in spring k 2 is -k 2 ({)2 - 83)

onI 2 andk 2 (e 2- e3) onI 3. The moment from spring k_ will be -k 3(83)onl 3. Apply-
ing Newton's second law of motion (_ F = ma or _M = I_) to each mass inertia results

in

Ii e'l= - kl (el - 692) (1)

I2 _'2 =kl (01 - 82) - k2 ({)2 - 03) (2)

I3 83 = k2 (02 - 03) - k3 (}3 (3)

which are the desired governing equations.

The same equations are obtained by generating, kinetic and potential energy

expressions for the system and introducing them into the LaGrange equation

]b (KE)] b(PE) bW = 0 (4)



_' 1 -2For the system under investigation, the kinetic energy is _ I i 0 i
3 i=l

1 2

and the potential energyts_ _-k i(_o)i wher e_01 =01-02 , &O 2 =82_03 ,
i=l

and _e 3 = e3.

Substitution in the Lagrange equation yields

I! e'l + kl (01 - e2) = o (5)

I2 _'2 - kl (01 - 02) + k2 ( 02 - 03) = 0 (6)

I3 _'3 - k2 ( 02 - 03) + k3 03 = 0 (7)

It should be noted that the system is considered undamped and free from external

forces. The general form of the governing equations is such that they may be expres-
sed in matrix notation as

[M] [_'} + [k] [0 } = IF ]

where for modal calculations, F = 0.

(s)

If simple harmonic motion is assumed, this becomes

2
-a) [M] [0] +[k] IS] = 0 (9)

or

e= 2 [k ]-1 [M ] [{9 ] (10)

Either of these equations is in a form suitable for the solution for the elastic

orthogonal modes (eigenvectors, ¢) and their natural frequencies (w). Several

selected techniques of solution are described in Section 4.2.

The dynamic response of the system to applied external loads may be described

through the use of normal mode theory. The time dependent motion of the system may

be described in terms of the natural modes of vibration ( ¢ } as

Oi =_ ¢inqn or [8 ] = [¢ ] [q } (11)
n



qn is the time dependent amplitude of the mode n.

equation 8 to yield

This can be substituted into

from whence it follows that

[¢]' [M7 [¢] [q] +[¢]'[k] [¢] (q]= [¢]' {F] (13)

By reasons of orthogonality, the matrix formed by [ ¢ ] ' [ M ] [ ¢ ] is a

diagonal matrix of generalized masses, and is expressed as [_ ]. Further, the

matrix formed by [ ¢ 1 ' [k ] [ ¢ ] is the diagonal generalized stiffness matrix. If

the generalized stiffness is divided by the generalized mass, the result is the square
of the natural circular frequency, c_2. Consequently, dividing Equation 13 through

by [_ ] yields

{_] + [ 2_ {q] = _-i [¢], {F} (14)

These equations are uncoupled, permitting each mode to be treated individually.
/

2 Qn(t) (15)

where Qn (t) =_ _in Fi and_n =_ Ii ¢2
i i

Equation 15 may be solved to yield time dependent values of qn which may then

be used in Equation 11 to obtain total system response.

The above description displays the basic procedure in the solution of dynamics

problems. The mathematical model used is the key to the entire study, and its

proper development is vital to the analysis. Therefore, it is justified to dwell at

length on the manner in which the model is formed and the factors which influence

its development, as well as some techniques of solution.

3.1 CYLINDRICAL LIQUID PROPELLANT VEHICLE

Frequently, the torsional characteristics of the cylindrical liquid propellant vehicle

can be adequately defined by using a simple shaft model. In the vast majority of

cases it will be either necessary or more practical to construct the model using a

lumped parameter idealization. In its fundamental form, the model attempts to dupli-

cate the effects of major aspects of the vehicle (primary structure, major mass con-

centrations, etc.). The discrete model is formed by concentrating the distributed in-

ertias into distinct inertias at selected points along the shaft. The concentrated



inertia which is to represent a certain area under an inertia distribution curve should

ideally be located at the centroid of that area.

Once the concentrated inertias have been located, thus defining the shaft segments,

the torsional elasticity between concentrated inertias is developed from the dimensional

and material properties of the shaft segment and is generally represented by a torsion-

al spring with a rate, k, which duplicates the elastic behavior of the shaft it replaces.

The development of torsional spring rates is examined in Section 4.1.

3.1.1 SELECTION OF INERTIA. The polar moment of inertia to be considered is

composed of vehicle structure and components. Components are often placed around

the periphery of adapter s_tructure and will be a significant portion of the total inertia.

These components can be considered as rigidly attached if their mount frequencies

are greater than the frequencies of the torsional modes to be considered. If the mount

frequencies are lower, then the component must be attached elastically, possibly

through lateral and torsional springs on a rigid arm an appropriate distance from the
tank centerline.

The number of concentrated inertias given to the model determine the number of

degrees of freedom of the system, and thus, the number of simultaneous governing

equations. As the number of degrees of freedom increase, the model approaches the

continuous system, but the solution becomes more difficult. At some point a trade-

off must be made between accturacy and practicality.

To illustrate the relationship between accuracy and degrees of freedom of the

discrete model, consider a uniform cantilevered shaft. Its natural frequencies are

readily obtained via the classical solution as a continuous system and are

f_8_ G
= (2n-l) _]

n 2 V P L2 (16)

where U)n is the n th natural circular frequency, G is the shear modulus of the

material, p is mass density, and L is the length of the shaft.

Let this shaft now be represented by a system of mass inertias connected in

series by rotational springs, and connected to a rigid base at one end. For a given

system of i inertias, each inertia will have the value of J.___. Each spring will have

a spring rate of JGi--L-- • J is the polar moment of inertia oflthe shaft cross section.

The frequencies of lumped uniform systems are given by, from Reference 6,

=_/Z i2Gn = C. ,/ G (17)

m _] .2n 0L 2 01 _

10



2n-I

where Zn =2 (l-cos 2i+1 Tr )

Values for Cin = i _ are given in Table 1. Figure 2 gives a comparison of the

frequency coefficients obtained from each discrete system and the coefficients of the

continuous system. The data indicate reasonable accuracy is obtained with ten iner-

tias for the first mode. The accuracy of higher modes degenerates rapidly with

increasing order.

Table 1. Frequency Coefficients for Lumped Cantilevered S

1

2

5

i0

1.0000 1.24

3.24

1.43

4.16

9.60

10

1.49

4.45

12.46

19.80

2O

1.53

4.59

13.52

26.60
i

30

1.55

4.63

13.80

28.20

rstem

5O

1.55

4.66

13.98

29.20

Accuracy will be harder to obtain if the shaft is nonuniform, as the discrete

model will have to represent the variations in inertia and stiffness distribution.

Accordingly, it is suggested that a minimum of 10 inertia terms be used for every

mode desired. It should also be mentioned that the law of diminishing returns applies

to this aspect of modeling; each additional inertia term increases the accuracy of the

model, but to a lesser degree than the one preceding it. Consequently, the use of

more than 15 inertias for each mode desired will rarely be justified.

For a more complex model (such as one with branched shafts and components)

the above general rule is not strictly applicable. For a branched system, the gener-

al rule can be applied to the primary beam of the system, and inertias lumped on the

secondary branches in about the same distribution. As the model diverges from the

single beam concept, more reliance must be placed upon the experience of the analyst.

3.1.2 LIQUID PROPELLANT EFFECTS. In the case of the liquid propellant ve,hicle

vibrating in pure torsion, the propellant is virtually unexcited. Since the only stress

condition is that of shear, the liquid can participate only to the extent allowed by its

viscosity. It is most probable that the fluids in the vehicle tanks can be considered

nonviscous, and therefore contribute nothing to the inertias. It is evident that under

these conditions, the quantity of propellant has no effect on the torsional vibration

characteristics of the vehicle, hence these characteristics do not vary with time in

flight.

11
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3.1.3 ENGINEREPRESENTATION. Enginesrepresent a sizeableproportion of
vehicle weight (excludingpropellants)andare often attachednear the tank periphery.
Consequently,they are predominantfactors in thepolar momentof inertia. The
enginesare incorporatedwith the torsional modalby attachinga massandmomentof
inertia at the appropriate location in the one-dimensionalshaft. A rigid bar canbe
usedto locate the enginenear theperiphery as in Figure 3. This structure is gener-

ally complex and test data is often required for proper simulation.

'-- SHAFT REPRESENTING TANK_---- RIGID BAR
I

',,--- LATERAL AND TORSIONAL SPRINGS

_---ENGINE MASS AND POLAR INTERIA

i

Figure 3. Engine Representation

3.1.4 BRANCH SHAFTS. Frequently the vehicle construction will be such that

major portions are cantilevered within another structure or are connected through

different load paths, e.g., payloads enveloped by protective fairings, engine compart-

ments of upper stage vehicles suspended in the inter-stage adapter well, or multi-

engine vehicles having independent load paths for each engine such as a center engine

supported on the tank cone and peripheral engines mounted to the cylindrical structure

of the vehicle. Such conditions are illustrated in Figure 4. Reali3tic representations

of these arrangements are required for true definition of g-ross vehicle response.

These multiple paths can be accounted for by appropriate branch shafts from the

major center shaft. So long as the analysis is restrained to one dimensional motion,

there is no significant added complexity introduced by the branch shafts, since the

compatibility relationships at the junction points can be easily satisfied. Note the

model in Figure 4. Branch shafts can be attached by 1) secondary shaft elements, as

is done for the payload fairing and the upper stage engine structure; or 2) concentrat-

ing elasticity in lateral linear and angular springs at ends of rigid bars as is done for

the external engines of the booster.

3.1.5 LOCAL STRUCTURE EFFECTS. One of the major difficulties encountered

in describing a vehicle is the representation of supporting structure for engines,

payloads, and components. It is possible to obtain influence coefficients analytically,

but a final check with load deflection tests is advisable if it is probable that this

structure can influence the modes of interest.

: 13
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Figure 4. Example of Branched System

3.1.6 TEMPERATURE. Primary structures of space vehicle systems are subjected

to change in temperature of hundreds of degrees varying from cryogenic temperatures

to the extreme elevated temperatures resulting from aerodynamic heating. This in-

crease in temperature causes a reduction in the material moduli which in turn leads

to a small reduction in frequencies and altered mode shapes. Temperature consider-

ations are unimportant until after the period of maximum aerodynamic pressure and

then only for certain portions of the vehicle. Since the period of maximum heating

occurs after the period of maximum disturbance and only affects parts of the structure,

its significance is greatly reduced. The heating of various portions of the vehicle can

be predicted within tolerances necessary for modal analyses to establish the resultant

variation in modal parameters.

3.1.7 AXIAL LOAD. Axial loads do not alter the expressions of energy or strain

associated with torsion except through second and third order terms. The modal

analyses are restricted to small displacements and all terms higher than first order

are omitted. Therefore, axial load effects should also be omitted.

_P

14



3.1.8 LATERAL-TORSIONAL-LONGITUDINALCOUPLING. Thetypical axis sym-
metric cylindrical spacevehicle is analyzedas if lateral, torsional, andlongitudinal
motion are not coupled. Actually, thesevehicles are not completelysymmetric and
a possible couplingmechanism,howeverslight, canalwaysbe found. The importance
of this couplingcanvary greatly from vehicle to vehicle. Even if it is knownto exist
from flight or experimentaldata, the couplingmechanismis difficult to identify. These
couplingproblemsoften occurwhenthe modal frequenciesof two modes, say, onelat-
eral andonetorsional, are very close together. Thena very small couplingmechan-
ism, suchas centerof gravity (c. g.} offset from the supposedline of symmetry, can
result in coupledmotion.

A comparisonof the fundamentalfrequenciesof the modesin the three directions
shouldbe madeto determine the existenceof modesof nearly equalfrequency. If
sucha conditionexists, it is necessaryto examinethe conditionunderwhich this may
causea significant problem. As anexample, if a limit cycle canoccur dueto sloshing,
couldthis causeexcitation of a critical torsional modeat this samefrequencyor sub-
harmonic? In most instancesof couplingof this type, a periodic forcing functionis
necessaryto transmit the energyfrom onedirection to another.

Cylindrical vehicleswith unsymmetric upper stagesor payloadsof large mass
cancausecoupling in the various directions in the low frequencymodes. The model
andanalysis thenbecomescomplicatedandapproachesthat of the clustered boosters.
Representationof this configurationrequires detaileddescription in the unsymmetric
stagesandproceedingwith analysisas described later for clustered boosters. Pre-
liminary work would indicate the degreeof sophisticationto be usedfor adequaterep-
resentation for stability andloadsanalysis.

3.1.9 DAMPL_GEFFECTS. Structural dissipative (damping}forces exist in the
vibrating structure as a result of material strain hysteresis andcoulombfriction in
structural joints. Thenature of thesedampingeffects is obscureanddoesnot lend
itself to analysisother thananapproximateempirical treatment, by which the gross
effect of thesescattereddissipative mechanismsis representedas anequivalent
viscous damping,addedto eachmodeas appropriate. Thedampingis thus assumed
to producenocouplingbetweenmodes. While this mechanizationis notentirely
realistic, it is justified by the following observations:

ao The actual damping is very low and is found by test to produce little coupling.

Thus, nearly pure normal modes of a system may be excited and the system

observed to decay almost harmonically. The indication given is that velocity-

dependent coupling is very small.

b. If an attempt is made to show a velocity-dependent coupling, the coefficient

would have to be determined experimentally. Since the direct damping coeffi-

cient is _.tself difficult enough to measure, it is clear that the accuracy of a

study can not be increased by the introduction of still more suspect data.
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The structural dampingforce is a function of the deflection of the generalized

coordinate of the mode but in phase with the velocity of the generalized coordinate of

that mode. To treat this damping as a viscous damping requires that the mode oscil-

late in a quasi-harmonic manner. This damping force may then be expressed as a

damping factor, _n, where 2 _n _n _ln is the internal damping force of the n th mode

per unit generalized mass.

Equation {15), with damping included, becomes

2 -1
°_n + 2 _n _¢n tin + _¢n qn =_n Qn (18)

Methods for obtaining values of _n from vibration test data are given in the mono-
graph covering that subject. The dissipative forces associated with sloshing are cov-

ered in the sloshing model monograph.

3.2 ADDING COMPONENTS USING MODE SYNTHESIS

Frequently it is desirable to make a parameter study to determine the effect on

vehicle response resulting from changes in the characteristics of a specific area or

component, e.g., a sloshing mass or engine system. Rather than make several

analyses of the system changing but a fraction of the parameters each time, the vibra-

tion characteristics of the system excluding the specific varying parameter may be

calculated, and then modified by coupling the parameter back in through the mode syn-

thesis technique {discussed in Section 4.3).

For reasons developed more fully in Section 4.3, the mode synthesis approach

may result in a loss of accuracy. The analysis that considers the most information

about the system will be the most accurate. The use of many modes in the mode syn-

thesis technique will give theoretically more accurate results than using a minimum

number of modes. This aspect is one which must be handled by discretion born of

experience. As an example, in calculating the torsion modes with engine representa-
tion, three alternatives are available.

a. Include the engine inertia as an attached spring-inertia to the shaft in the modes
calculation.

b. Assume the engine inertia is included in the "rigid" components for modes calcu-

lation. The engine elasticity is then included through mode synthesis by adding

the single spring mass mode and subtracting the en_o-ine inertia effects from the

torsion modes. This requires both inertial and elastic coupling in the synthesis.

C- Assume the engine inertia can be eliminated in the "rigid" components for modes

calculations. The engine is then included through mode synthesis by adding the

simple spring mass mode. This requires only elastic coupling in the synthesis.
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Thesealternatives are listed in order of accuracy of end results following the

general rule stated previously. There are many examples where there would be

little if any degradation of accuracy. As _ example, consider a vehicle with first

torsion frequency of 20 cps and first engine frequency of 5 cps, then the engine is

essentially uncoupled from the elastic modes. If the engine frequency were 15 cps,

then considerable coupling is possible.

Although engines were used as an example, the same is true for any represen-

tation of this type, i.e., engines, payloads, or any other large component or specific

parameter under investigation.

3.3 CORRECTING MODEL BASED ON TEST RESULTS

The final verification of analytical techniques is a comparison with experimental data.

Perfect comparisons are indeed exceptions since both the analytical model and experi-

mental model are approximations to some extent. The analytical approximations have

been discussed. The major experimental approximations are centered around suspen-

sion system effects and vehicle modifications required to accommodate the susp_ension

system. No general rule can be made to obtain better agreement between test and

analytical. Careful examination of the data and the structure will probably indicate
several areas where the representation is inadequate or does not define the test speci-

ment. Possible causes of differences are:

a. Effects of suspension system on test environment.

b. Stiffness of joints or trusses.

c. Effect of large components, such as engines.

d. Experimental modes may be impure, i.e., not orthogonal Or include parts of

other modes.

e. Representation of system inertia.

The work of Reference 7 presents a method for obtaining the flexibility matrix

from experimental mode data. The procedure orthogonalizes the experimental modes,

using an analytical mass distribution, and then derives the flexibility matrix of the
structure. This method can be useful if completeand accurate experimental data is

obtained for a system difficult to model. It can also be used to locate possible dis-

crepancies between analytical and ex-perimental results.

3.4 SOLID BOOSTERS

Torsion models of solid propellant vehicles require the same considerations as liquid

propellant vehicles except in the treatment of the propellants. All the propellant is

included in inertia representation of the solids as compared with complete omission

in the case of liquids. Since torsional problems have not been encountered in solid
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vehicles, very little work has been done to substantiate the model, analytically or

experimentally. It can be inferred from the monog-(.aph on longitudinal models that a
large portion of the mass can be considered attached to the outer casing. The inner

portion could then be considered attached through appropriate springs. However,

since effective inertia decreases as the fourth power of the radius, no appreciable

error is introduced by assuming the entire mass rigid.

3.5 CLUSTERED BOOSTERS

One method for obtaining the higher thrust required for large payloads is to attach

rocket-engines or motors to a central core; for liquid boosters a peripheral ring of

propellant tanks is attached to a center tank and the engines are supported on truss

members connecting the tanks; for solid boosters, the motors are attached to a central

solid or liquid booster. These clustered tank designs destroy axial symmetry and

quite often planes of symmetry. This results in a more complicated lateral model

where a number of cylindrical tanks are coupled by their elastic connections and must

be allowed freedom in several directions for an adequate description of vehicle modes.

For preliminary design it is sufficient to choose approximate planes of symmetry

and analyze the vehicle for bending modes in pitch and yaw planes using branch beams

connected to the central core by translational and rotational springs. Simplified tor-

sional and longitudinal models will also suffice at this stage. These simple models

can be used to identify possible problem areas (such as relative modal frequencies)

and provide design criteria for the connections between tanks.

A complete analysis (or test) should be undertaken to describe all the primary

modes of the clustered vehicle. This analysis would provide displacement and rota-

tion in two mutually perpendicular planes; torsion and longitudinal motion. The model

of the tanks for displacement and rotation in each of the tnvo planes would be very simi-

lar to that discussed for the cylindrical booster, l>rovision must be made to account

for the motion of the outer tanks in these two directions due to the torsional displace-

ment of the center tank and the elastic connections. It is also possible that lon_tud-

inal motion will couple with lateral and torsional displacement. As an example, con-

sider a cluster arrangement where the connection at the bottom transmits moment,

shear, and axial restraints while the connection at the top provides only shear res-

traint. Then it is possible to find a mode where the external tanks are bending, caus-

ing moments and deflections at the connection to the center core which will result

in longitudinal motion of the core. The significance of these types of modes can only

be ascertained from the analysis (or test) and can vary greatly from vehicle to vehicle.

The torsional properties in the model can be represented by the torsional stiff-

ness and roll inertia of each tank. The tanks must then be connected by the elastic

properties of the truss. Formation of the longitudinal model is _ven in the monograph

on that subject. The complete model for the clustered booster then consists of the
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lateral model in two planes, the torsional model and the longitudinal model. These

models are then combined through the elasticity and geometry of the connections to

provide the stiffness and/or mass coupling.

Analysis (or test) will probably show some planes of symmetry and can also show

that some of the coupling mechanisms are unimportant for the particular problem to

be solved. If this is the case, it is justified, and expedient, to devise a mathematical

model from the results of the complete analysis (or test) which represents the modes

of interest.

The analytical representation of the clustered booster is more approximate than

that of the one-dimensional beam lateral model, especially for the condition of coupled

modes. The tri-axial strain relationships are not completely satisfied, and the iner-

tia terms could be poorly represented in the combination lateral-axial motion. These

effects generally are of second order and as such should not alter the primary modes.

The elasticity of tile connection points probably will require test data for accurate

values. The numerical techniques employed for the solution of the system character-

istics have been used for many years in the industry; however, some problems in

accuracy can be encountered when applied to the clustered booster. The number of

points describing the system may be compromised for efficient computer operation and

this vehicle may have modes of nearly equal frequency which will be difficult to separ-

ate analytically (and experimentally).

The elasticity of the vehicle is most easily described by a coupled stiffness matrix,

but solving for the characteristics would then involve inversion of this matrix. This

inversion may lead to errors because of machine round-off errors. If the inversion

is successful, round-off errors could still be significant in the iterations for the char-

acteristic values, especially for modes with nearly equal eigenvalues. The inversion

problem can be circumvented by writing the coupled flexibility matrix directly. The

required transformations can be complicated and lead to errors, but with special care

this is not insurmountable. Another approach would develop an uncoupled flexibility

matrix and perform transformations of coordinates to provide all necessary coupling

in the mass terms. These last two approaches would still have possible problems in

the iterations on the systems characteristics.

An approach useful in calculating modes of complex systems is the component

mode synthesis method. Here the modes of the individual pieces are calculated and

then the combined modes are obtained from the modes of the component parts. This

is based on the assumption that significant motions of the individual tanks can be des-

cribed by a small number of modes. If this is true, then the solutions for the com-

bined system can be performed in terms of less coordinates.

Most of the clustered booster work to this date has involved two vehicles, the

Titan IIIC and the Saturn I. Titan HIC is comprised of a center core liquid booster

with two attached solid boosters (Fioo'ure 5); the cennections at the bottom transmit
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axial load, shear, moment, and torque. The top connection transmits only shear.

Because of the nature of the connections, it can be seen that yaw bending and longi-

tudinal coupling can occur and pitch bending and torsion is another possible coupling

mechanism. Storey in Reference 8 develops the coupled flexibility matrices for these

two conditions. This method encountered difficulty in that the number of stations re-

quired for adequate representation of the system with the required transformations

exceeded computer capacity.

The final Titan IIIC analysis presented inReference 5 utilizes the mode synthesis

approach. The longitudinal, torsional, and pitch and yaw bending modes are deter-
mined for each tank and are then coupled by the elasticity of the connecting elements.

The influence coefficients for these trusses were obtained experimentally. A report

giving comparison of analytical and 1/5 scale experimental results is to be published.

The Saturn I vehicle consists of a center LO 2 tank with eight peripheral tanks

for alternating IX) 2 and RP-1. These tanks are connected at top and bottom by

trusses (Figure 6) providing axial, shear, and torsion restraint in both planes at

the bottom plus moment restraint in the tangential planes. The top connection pro-

vides similar restraint except for the fuel tanks which do not transmit axial load.

The trusses are not symmetric with respect to planes of symmetry of the tanks, but

this effect is small so that planes of symmetry as defined by the tanks do not intro-

duce large errors.

Milner (Reference 4) establishes theoretically the uncoupling of pitch, yaw, and

torsion modes for a symmetrical clustered booster and investigates the effect of

minor asymmetry. Results of this study indicate that the effect of such coupling on

natural frequencies is minor; mode shapes are not presented.

Leon.is (Reference 9) develops a matrix solution of the dynamics problem of a

four-tank booster without center core. The flexibility matrix of the whole unit, with

appropriate beam end fixity, is derived. This flexibility matrix together with suit-

able mass matrix is used to derive equations of free vibration in matrix form. The

tanks are assumed to be similar, but the solution can be modified accordingly for the

case of nonsimilar tanks and for other tank configurations. The formulation is gen-

eral so as to furnish any complex mode of vibration. Simple modes, however, can

be obtained as particular cases of the general problem.
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4/METHODS FOR SOLUTION

4.1 FORMATION OF THE COUPLED EQUATIONS

The primary purpose of the torsional model is to provide an analogy of the real

system which can be represented mathematically. The general approach to the

solution of the governing equations, as outlined in Section 3, requires the formation

of the inertia, stiffness and dynamic matrices.

4.1.1 STIFFNESS MATRIX. Formation of the dynamic matrix in Equation 10 re-

quires the development of the inertia matrix and the inverse of the stiffness matrix.

Direct formation of the flexibility matrix (which is the inverse of the stiffness matrix}

is rarely justified. A torsional model is a close-coupled system, i.e., internal forces

on one inertia element are dependent on the displacements of adjacent inertia elements

only, as opposed to the lateral beam bending model which is far-coupled, i.e., inter-

nal forces at a given point may reflect displacements of non-adjacent points.

An element, Kij , of a stiffness matrix may be thought of as the force applied

at point i due to a unit displacement at point j when all coordinates of the system

other than j are restrained against displacement.

From this definition, it is apparent that it is possible to form the stiffness matrix

directly from the spring rates of the system. For example, consider the complex tor-

sional model of Figure 7.

! ----k2 [_ k5 _,

m • 11111 8

Figure 7. Complex Torsional System

Restraining coordinates 2 through 5 and displacing coordinate 1 a unit amount, the

resultant forces will be (k 1 + k 2 + k 3 + k4) on inertia I1, -k2 on inertia 12, -k 3 on

inertia I4, and -k 4 on inertia 13. The first row of the stiffness matrhx is

( [k 1 +k 2 +k 3 +k4] -k 2 -k 4 -k 3 0)
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The succeeding rows can be developed in a similar manner.

matrix is
m

(k 1 + k 2 + k 3 + k 4)

-k 2

-k 2 -k 4 -k 3

(k 2 +k 5 +k6) 0 -k6

The final stiffness

0

0

-k 4 0 (k 4 + k7) 0 -k 7

-k 3 -k 6 0 (k 3 +k 6 +k 8) 0

0 0 -k 7 0 (k7 + k 9)

In all cases of pure torsion, it is possible to translate the real system into a

model of mass inertias connected by linear torsional springs.

The polar moment of inertia, J, of the vehicle will, most likely, be variable

along the vehicle length. This will affect the torsional stiffness. Generally, however,

the distribution of polar moment of inertia along the vehicle axis may be idealized with

satisfactory accuracy by a straight line segmented curve. Equivalent torsional stiff-

ness may be developed by considering a shaft fixed at one end with a linear variation of

J from J1 to J2, as shown in Figure 8.

d
-I

I

The angular twist produced by a torque

applied at the free end is given by:

I 1

TdxJ2 e =

o
-i

or
£

Figure 8. Cantilevered, Linearily T / dx
Varying Stiffness Beam 0 - Gj 1

0 L J1

= -G J2 : J1 '_1
(19)
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The torsional stiffness, k, is equivalent to the torque required to produce a unit twist,

or

G(J 2 - J1 )
k = (20)

Lln (J2/J1)

Note that this expression becomes an indeterminate form when J1 = J2"

[ lim lim

However, by employing L'Hospital's rule _j_ C _g(J) = "J-r--_lim

J-C

a value of k at J1 = J2 can be found:

d Jill)
d J1

-G

=

I

lira

lira _G [J2-J1 ] ) J1 _J2 (G [ J2-J1 ])
J1-'J2 \_-ln[J27J1] = _m

J1 "_ J2 ( _In [J2/J1 ])
lira

J1- J2 - G GJ 2

lira
L

J1 - J2 - _-1

1

f(J) lim f' (j) \

)g(J) lim

J- C g'(J)

Examination of the expression for k indicates that the direction from J1 to J2

has no influence on the spring rate. Therefore, if the stipulation is made that J2

J1, the graph in Figure 9 provides a coefficient to be applied to the stiffness value

of the shaft of constant J = J2 to obtain the equivalent spring stiffness of a linearly

varying stiffness shaft.

It should be further pointed out that the value of J should never go to zero, as

this implies no resistance to torque and, consequently a stiffness value of zero.
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A tacit assumptionof the foregoingdiscussionis that the model is fixed or
connectedto at least onepoint of a rigid, immovablebase.

The governingmatrix equationin sucha case"is

[M] [0"] + [K] [ @}

or, in its solvable form,

[el

where [ C ]

[M]

[¢}

k

= 0

[M ] [ ¢ ] =_, [¢ }

is the inverse of the stiffness matrix

is a diagonal matrix of mass inertias

is the eigenvector to be determined

is the eigenvalue to be determined =
2

1/ oQ

For a free system (one not attached to a rigid base) the form of the equation

must be modified to

[C ] [M] {¢ } = _. [ [¢:} - [o' ] D O "] (21)

In the analysis of the free system, the structure must be temporarily fixed at one

point. If the structure were not fixed, an external moment applied to the system would

cause it to rotate uniformly. A solution to the problem would then be impossible. Math-

ematically, this is represented by a singular stiffness matrix, EK 5. In Equation 21,

the term - lot } _0 releases the fixed point. The resultant rotation is _o. By applying

the principals of angular momentum to the system, Equation 21 can be expressed as a

standard eigenvalue problem

{[C].[M]+[TR]} {_} : X [¢}

where [TR] [¢ ] = ), [c_} b0

and [ C ] [ M ] + [TR ] is the final d)-aamic matrix.

whose elements are each 1.

The vector [O'}is a vector

Applying the conservation of anbmlar momentum,

10 0+[e}'[M3 {¢}-- o

where I 0 is the mass inertia at the restrained point.

(22)
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Premultiply Equation 21 by { _ [ M -] to obtain

2

[ _ }' [M ] (_b} - [_]' [M ][ Ot}_ 0 = U_

Defining

then

[B} = {a}' [M] [C I [M],

2

-10u 0 - [_}' [M] {n, ]_0 : Oo {B] { ¢}.

{U]' [M][C'][MI {q_}.

Since the total vehicle inertia is

IT = I 0 + [C_}'[M ] [O,},

it follows that

1_0 =

2
{B} [¢}

I T

By satisfying the identity

[TR] { ¢ ] = k { _ } u 0

it is seen that

1 1

[TR]:T_ T {_} {B 1= IT
[M ] [C ] [ M 1.

4.1.2 FLEXIBILITY MATRIX. The simplicity of development of the stiffness matrix

for close coupled systems justifies the difficulty of inverting it to form the dynamic

matrix in most cases. Forming the flexibility matrix directly is justified only for

simpler systems. Virtually any redundancy of the structure makes direct development

of the flexibility matrix less practical than inverting the stiffness matrix.

The flexibility matrix relates displacements to applied loads:

{o} = [cl [M}
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Considering each spring element independently

Oi = Ci Mi

where 0i is deformation of one end of the spring with respect to the other end and Mi

is the total applied moment. The total deflections of the connected system are found

by transforming from relative coordinates to absolute coordinates

{0i} = [T] [0i }

The total applied loads, Mi, can be considered to be functions of the external moment,

m i, applied to each inertia of the system, expressed by the transformation

[Mi} = [R ] {mi}.

Thus the relationship between total displacement, Oi, and the external moment, m i,

applied to each inertia is developed by substituting the transformed values

[0i ] = [c 1 [M i]

IT] [Oi } = IT ][C ][R ]{m i ]

{0i } : IT l[C ][R] [mi].

Thus, [ T ] [C ] [R ] = [C* ] equals the coupled flexibility matrix.

For a redundant structure, the influence coefficients are not so readily obtained

and use must be made of an appropriate static analysis such as virtual work or Casti-

glianoVs theorem, Reference 10.

An example of the development of a flexibility matrix is given below.

Consider the torsional system shown in Figure 10.

M 1 M 2 M3

Figure 10. Cantilevered Torsional System
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The quantity M1 is the external torque applied to inertia i. If C i = 1/k i, the angular

deformation of each spring resulting from the total moment imposed on each is given

by Oi = Ci Mi, or for the entire system

{0} 0 01{M}82 = C 2 0 M 2

83 0 C 3 M 3

(23)

The total deflection of each inertia can be expressed in terms of the relative deforma-

tion of the springs,

el = _1

82 = 81

e3 = 01

or, in matrix form,

8 2 =

8 3
, o o]1 1 0

1 1 1

Combining Equations 23 and 24,

(24)

or

{}[82 = 1

83 1

0

1

1 0I01 I C I

0

0

0

C 2

0 {M,}M 2

M 3

{''}[CI82 = C I

83 C I

0

C 2

C 2

i] (25)
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The total moment at any element can be related to the applied loads at each point

M 1 = m 1

M 2 = m 2

M 3 = m 3

+ m 2 + m 3

+ m 3

or, in matrix form,

M 2 = 0 1 1 m 2

M 3 0 0 1 m 3

(26)

Substituting Equation 26 into Equation 25 yields

82 = C 1 C 2 0 0 1

3 C 1 C 2 C 3 0 0
iIml}1 m 2

1 m 3

or

{1t[elclcll{mltO2 = C 1 (CI+C 2) (CI+C 2) m 2

83 C 1 (CI+C 2) (C1+C2+C3) m 3

4.1.3 TRANSFORMED MASS MATRIX. An approach that is particularly advanta-

geous for close-coupled systems is that of transforming the coordinate system from

the absolute to the relative sense. In prior discussions the displacements of the

system coordinates have been referenced to a fixed point or neutral position. These

same displacements may also be expressed relatively; referenced to an adjacent co-

ordinate. The relationship between displacements in absolute terms, [ 8 ], and the

displacements in relative terms, [8 ], is readily described by a simple transforma-

tion matrix:

[8} = IT] [e]

Thus the kinetic energy of the system can be expressed in terms of relative

coordinates by
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2KE = [@]' [T]'[M]CT][8]

Thedeflectionsof the connectingsprings are expressedin terms of relative
coordinates,which, in its most general form requires anothertransformation matrix

[a ] : [TR] [8 ]

If the number of springs is equal to or less than the number of inertias, the

deflection of each spring will be defined by a different relative displacement; con-

sequently the transformation matrix, [ TR ], can be written as a diagonal matrix of

unit elements. For such a case, [TR ]may be neglected without affecting the solution.

The potential energy of the system is given by

2PE= [_ } [TRI' [El [ TR] [0 ]

where K is a diagonal matrix of the spring rates.

Substituting the kinetic energy and potential energy terms into LaGrange's equa-

tiorl

the equations of motion become

_W
+ -- 0

_qi

[T ]'[M ][T ] [8 ] -4 [TR1 '[K ][TR ] [ @ } = 0

and the dynamic matrix is established by

[ ( CTR]'CK]CTR)-I [T]'[M]CT] ] _ ¢} = ). [¢]

The advantages of this method are greatest when the system is free or cantilever-

ed and multiple load paths are absent or constitute only a minor portion of the system.

Under these conditions, the transform matrix [TR ]contains little or no off-diagonal

terms; the matrix [TR ] ' [K ] [ TR ] is no more than slightly coupled and may be invert-

ed with a minimum of effort.

When the number of springs is equal to or less than the number of inertias, the

transform matrix is a diagonal matrix of unit elements ; [ TR ] ' [ K ] [ TR ] reduces

to [ K 1 which, being a diagonal matrix, can be immediately inverted by taking the

reciprocals of the individual elements of the diagonal. The dynamic matrix can be

determined with a minimum of effort and operated on to obtain modal data.
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This approach is very similar to the method in the previous section with the

transformation of coordinates coupling the mass matrix instead of the flexibility

matrix. Note that the modes, { ¢ }, are in terms of relative coordinates and must

be premultiplied by the transform matrix, [ T 7, to obtain absolute vectors.

4.2 SOLUTIONS FOR CHARACTERISTICS

Formulation of the equations of motion of dynamic systems results in a linear differ-

ential equation for the continuous exact solution or a series of differential equations

for the approximate solutions. For torsional vibration usually only the lower modes

are of any significance and therefore the approximate solutions are of practical im-

portance. Two methods are used to describe the system in these approximate solu-

tions: 1) the system is divided into a finite number of segments connected by mass-

less stiffness, and 2) the system is described in terms of assumed functions. Solv-

ing for the characteristics of the resulting equations can be categorized into three

groups. These are 1} energy methods, 2) solving the differential equation and 3)

solving the integral equation. The equations are in the general matrix form

2
- _ [M] [e ] + [K ] [8 } = 0 (differential equation) (27)

or

2 7-1{ O } = _¢ [ K [M] _ O} = 0 (integral equation) (28)

The most general solution of Equation 27 involves expansion of the determinant and

solving the polynomial equation. This procedure is adequate for simple systems and

up to four degrees of freedom can be solved easily. Methods for higher order systems

have been developed in References 11 and 12. However, since only the lower modes

are important, some approximate methods have been developed which obtain these

modes and frequencies with sufficient accuracy. As a matter of convenience, many
of these methods are discussed in some detail in the monograph on lateral modes or

can be found in Reference 13.

4.2.1 MATRIX ITERATION. (Stodola and Vianello Method). The matrix iteration

technique is essentially the Stodola and Vianello method in matrix form. This method

was developed by Stodola (Reference 14) primarily for application to turbine rotors.

4.2.2 HOLZER (MYKLESTAD). A useful and practical method of determining

mode shapes and frequencies known as the Holzer method has been used by many

engineers for years. It was developed by Holzer (Reference 15} primarily for tor-

sional problems and extended by Myklestad {Reference 16) to the beam bending problem.

4.2.3 ENERGY METHODS {RAYI_EIGH-RITZ}. Lord Rayleigh's method of evaluat-

ing the fundamental frequency of a system is based on the principle of conservation of
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energy. At the maximum deformation of the system vibrating at its fundamental

frequency, all the energy of the system is in a potential energy form CPE = 1 f JG
\ 2 ./

_x dx . But at the instant the system passes through the equilibrium position,
1

J I0 2 dx ) If energy is conserved,its energy is entirely in kinetic form (KE = _-

the maximums of those two values may be equated. This criterion was first mention-

ed by Lord Rayleigh in 1877 (Reference 17).

4.2.4 MODAL QUANTITIES. Solutions to the characteristic equations give the re-

ciprocals of the squares of the circular frequencies and also the mode shapes of the

restrained system. The linear frequencies of vibration are obtained from the circu-

lar frequencies. If each mode shape, [¢n ], is considered to be the n th column of

a matrix [ ¢ ] of all the mode shapes, then [ ¢ ]'[ M ][ ¢ ] is an orthogonality

check of the mode shapes. The diagonal element, ( [ ¢ 7 '[ M ] [ ¢ ])nn, is called

the generalized inertia of the system for the mode n. (The generalized inertia of the

system may be considered to be a measure of the kinetic energy of the system. ) In

this discussion the vector [ ¢] was stated to be a mode shape of the structural system.

For a restrained system, [¢ ] is the complete mode shape. For a free-free system

the displacements due to t_ 0 must be added to obtain the complete mode shape. Also,

for a free-free system, the generalized inertia must be modified to include the con-

tribution of the temporarily fixed point.

4.3 MODE SYNTHESIS ANALYSIS

The complicating aspects of the clustered booster vehicle have, as a net effect, the

requirement of large numbers of coordinates in the model. The resultant size of the

governing equations may well be so large as to overwhelm the best of analysts or com-

puters. The technique of modal synthesis is a process whereby the dynamic character-

istics of the several components of the system are calculated separately, and then

brought together to evaluate the dynamic characteristics of the entire system. (This

is discussed in some detail in the monograph on lateral mode.)

4.4 EXAMPLE OF COUPLED BENDING-TORSION ANALYSIS

To illustrate the procedures used in a coupled bending-torsion analysis, the system

of Figure 11 will be analyzed using the stiffness matrix and mode synthesis approaches.

The procedure using the flexibility matrix approach is given in References 8 and 9.

The system consists of three uniform tanks, BE, CF, and DG. The center

tank, CF, continues to a fixed base A through structure CA which has the same

structural properties as the tank but has no mass. The outer tanks BE and DG are

connected to the center tank CF by crossbeams EFG and BCD and lateral springs, k.

The crossbeams are rigidly attached to the center tank and pinned with ball joints at

the outer tanks. It is assumed that the crossbeams are rig-id in the y-direction;
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D

3E,,

Figure 11. Sample Bending Torsion System

therefore, the lateral springs, k, act only as torsional springs. The system was

constructed in this manner so that for purposes of an example problem, the coupling

is restricted to torsion about the Z axis and bending in the X-Z plane. Also, to

shorten the problem, rotary inertia in bending was assumed to be equal to zero.

This system is represented by the lumped model of Figure 12. The mass and

inertia are lumped at twelve equally spaced stations. Stations 1, 4, 5, 8, 9, and 12

each have 1/6 of the tank mass or inertia. Stations 2, 3, 6, 7, 10, and 11 each have

1/3 of the tank mass or inertia. The lateral springs k are replaced by an equivalent

torsion spring, D. A lateral spring, E, connects the crossbeam and outer tank

(representing the lateral stiffness of the ball joint).

4.4. i STIFFNESS MATRIX SOLUTION. The typical beam element stiffness is

given below (shear stiffness effects are not included).
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RATE = D (TYP)

RU

ILU RU- 9 RU 9

RATE = E (TYP)- _

Figure 12. Analytical Model of Sample System

[K ] [X}
beam

12EI

£3

m

1 -1 ---
2 2

-I 1 -- --
2 2

i i 12 L2

2 2 3 6

_ _2 _2

2 2 6 3

• X i

Xi+ 1

i

/3i+1

(Example shown is for

vertical beam. For

lateral beam, replace _

with S)

There will be ten such matrices for the vertical beams, and four for the lateral

beams. It should be noted that these 4×4 beam matrices are direction-dependent;

i. e., the direction from node i to i + 1 must be the same for all vertical beam seg-

ments, and the same for all lateral beam segments. In addition, there will be ten

2×2 torsional stiffness matrices for the vertical beams, four torsional stiffness

matrices for the lateral clock-springs; four 2x2 stiffness matrices reflect the linear

springs at the ends of the outer beam. These 32 individual element matrices are com-

bined into one overall stiffness matrix as directed in Reference 8, or the monograph

on lateral models. This unrestrained stiffness matrix is reduced, partitioned, and

reordered according to the reference. The diagonal mass matrix associated with the

reduced stiffness matrix can be formed directly. The stiffness matrix is inverted,

and post multiplied by the mass matrLx to form the d_"namic matrix, which is then

iterated upon to determine the eigenvalues and eigenvectors.
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4.4.2 MODE SYNTHESIS SOLUTION. For the mode synthesis approach, the struc-

tore is divided into smaller components of simple construction. Torsion and bending

of individual beams can be considered uncoupled; consequently, the torsional model

and the bending model for each beam can be represented separately. Separation of

the elements is accomplished by removing the lateral beams and springs.

i \

_"LEFT TANK BENDING MODEL X I_--

X ',"

f ",

RIGHT TANK TORSION MODEL

\ /

RIGHT TANK BENDING MODEL

Figure 13. Separation of Model Into Components
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As is demonstratedin Reference8, or Section4.3 above,the final governing
equationis

ira] {_ } +[[ _2m ] + [TST' [RC]' [K c] [RC] [TS]] [_7]:0 (29)

where [ _ ] is a diagonal matrix of the generalized masses (or generalized inertias)

of the component modes, both rigid body and elastic; [ _2 _] is a diagonal matrix

of the products of circular frequency squared and generalized mass of each component

mode; iTS ] is a transformation matrix relating coordinate displacements to modal

weighting factors : {X ] = [ TS ] _ 1"/ ] ; [RC ] is a transformation matrix relating

connecting element deformations to coordinate displacements: [ _ ] = [ RC ] {X };

[ K c 7 is a matrix of connecting element stiffnesses; and [ 1"/] is a vector of modal

weighting factors.

For the left hand tank, let XL represent the weighting factor for its rigid body

translation, /3 L the rigid body rotation, O L the rigid body torsional rotation, _BL

the matrix of elastic bending mode shapes, and CTL the matrix of elastic torsional

mode shapes. Also _D. and 7?_TL represent the modal weighting factors for the
IL:2 I_ J • , • .

ith elastic bending mode and jth elastic torsional mode. Slmdar quanUtles, where

appropriate, can be established for the other tanks simply by replacing the L in the

subscripts with a C or R. The transform matrix [TS 7is thus:

X 1

X 2

X 3

X4
X 5

X 6

X 7

X 8

X 9

Xl0

Xll

X12

e I

e 2
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, L : , : I I i .' I I
_-_ l I _ : • : _ : ,
z--_: ! ; i I ! ; I I
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I 1 • •I ! . BC. , . .
' : ' I I [ , I I
I I l _ i . I . 1

I 1 • " l• , , 1 ! ! • i I
, I I : . '. I • •
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K L

/3L

r_iB L

r_2B L

®L

r_IT L

r_2T L

rl3T L

r11B C

772B C

r/3B C

r14B C

fliT C

_72T C
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The deformation of the connecting springs is expressed in terms of coordinate

deflections, via another transformation matrix, [RC 7 :

hXl_ 5

AX4_ 8

AX9_ 5

AXI2_ 8

_81-5

A8
4-8

A09-5

&012_ 8

- " I • I . -
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I " I . ooo-_i oooz

_ : i : i . _

fill
: I
!

012]

where S is the lateral distances between beams.

In this particular case, the connecting elements are simple spring elements,

thus simplifying the connecting stiffness matrix, [ KC_ , to a diagonal matrix. (The
lateral beams and translational springs be_veen them and the outer tanks are com-

bined into an equivalent linear spring. )
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The governingequation, Equation29, cannowbe formed. Eigenvaluesand
eigenvectorsare obtained;however, the eigenvectorsmust bepremultiplied by the
coordinatetransform matrix ETSIto obtainmodeshapesin terms of the original
coordinatesystem.

4.4.3 COMPARISONOF SOLUTIONS.To comparethe results of theset_vomethods
of analysis, it is necessaryto substitutenumerical values. For this sample, the
following parameterswere used:

a. Vertical beams:

I. = 10 m

El = 109 n-m 2
YY

ml, 4, 5, 8, 9, 12 = 4,325 kg

m2, 3, 6, 7, 10, 11 = 8,650 kg

equivalent kTORSIO N = 5.92 x 107 n-m/rad

I1, 4, 5, 8, 9, 12 = 0.8 x 104kg-m 2

I2, 3, 6, 7, I0, 11 = 1.6 x 104kg-m 2

b. Lateral beams:

S = 3m

El 2
xx = 1.6 x10 6n-m

C. Connecting elements:

lateral torsioh spring rate = D = 108 n-m/rad

ball joint translational spring rate = 7.8 x 108 n/m

The unrestrained stiffness matrix was constructed as shown below. It is

arranged so as to present the coordinates associated with masses and inertias

(Xi, ei) first, followed by those coordinates which are not associated with masses

and inertias (_ i' XLU' XLL' XRU, XRL' 0LU' eLL, _RU' 8RL )' and

finally those coordinates where motion is restrained ( XA, e A, BA). By arranging
the coordinates in this fashion, the resultant matrix needs no reordering and may be

reduced by partitioning immediately.
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7

8

9

9

I0

10

11

11

12

13

13

14

14

15

_--"--_--__Table 2. Non-zero Elements of the Upper Triangle of the Sample
_MN atrLx Coupled

1 1 _ALUE NUMERIC VA LUE
1 2 A +E

2 2 -A 7.92 x 108

2 3 2A -12 x 106

3 3 -A 24 x 10 6

3 4 2A -12 x i06

4 4 -A 24 x 10 6

5 5 A + E -12 × 106

5 6 A +2B 7.92 x108

6 6 -A 1, 3422 × 10 7

6 7 2A -12 x 106

7 7 -A 24 x 10 6

6
8 2A -12 x 10

8 -A 24 x I06

-12 × 106
9 2A +213

I0 A + E 2,5422 × 107

i0 -A 7.92 ×108

11 2A -12 ×106

11 -A 24 x 10 6

12 2A -i2 x 10 6

I2 -A 24 x 106

-12 XlO 6
13 A +E

7.92 x 108
14 C+D

14 -C 1. 592 × 108

15 2C -5.92 × 10 7

15 -C 1. 184 × 108

2C -5.92 × 10 7

1.184 x 108
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i

Table 2. Non-zero Elements of the Upper Triangle of the Sampled Coupled

System Uurestrained Stiffness Matrix, Contd.

ROW COLUMN ALGEBRAIC VALUE NUMERIC VALUE

15 16 -C -5.92 x 107

16 16 C + D 1.592 x 108

17 17 C + 2D + 2/3 BS 2 2. 63466 x 108

17 18 -C -5.92 × 107

18 18 2C 1. 184 × 108

18 19 -C -5.92 x 107

19 19 2C 1.184 x 108

19 20 -C -5.92 x 107

20 20 2C + 2D + 2/3 BS 2 3.22666 x 108

21 21 C + D -1.592 × 108

21 22 -C -5.92 × 107

22 22 2C 1. 184 x 108

22 23 -C -5.92 x 107

23 23 2C I. 184 x 108

23 24 -C -5.92 × 107

24 24 C +D 1.592 x108

25 25 I/3 A_ 2 4 x 108

25 26 I/6 AL 2 2 x 108

26 26 2/3 A_ 2 8 × 108

26 27 I/6 A_ 2 2 x l08

27 27 2/3 AL 2 8 x 108

27 28 1/6 AL 2 2 x 108

28 28 i/3 AL 2 4 × l08

29 29 1/3 A_ 2 4 x 108

29 30 I/6 At. 2 2 x i08

30 30 2/3 A_ 2 8 x 108

30 31 i/6 A_ 2 2 × 108
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Table 2. Non-zero Elements of the Upper Triangle of the Sampled Coupled
ROW COLUM 8ystera Unrestrained Stiffness MatrL,¢. Contd.

31 31 ALGEBRAIc VALUE

31 32 2/3 A,_ 2 NUMERIC VALUE
2 8 x 10 8

32 32 1/6 A_
2 2 xlO 8

33 33 2/3 A4,

33 34 1/3 A_2 8 x 108

34 34 1/6 A_ 2 4 xl08

34 35 2/3 A_ 2 2 x 108

35 35 1/6 A,_ 2 8 x 108

35 36 2/3 A_ 2 2 x 108
8 xl08

36 36 i/6 A_ 2
2 xI08

37 37 1/3 A_ 2
4 xl08

38 B+E

,$8 7.80711 x 108
39 B+E

39 7.80711 x 108
40 B+E

40 7.80711 × 108
41 41 B + E

7.80711 x 108
42 42 1/3 B8 2

2. 133 x 10 6
43 43 1/3 BS 2

2,133 × 106
44 44 1/3 BS 2

2.133 × 10 6
I 1/3 _s 2

25 2. 133 x 106
1 -112 AX

26 -6 x 10 7
2 -1/2 Ax

25 -6 x 10 7
2 1/2 A._

27 6 x 107

3 26 -1/2 A£
-6 × 107

3 28 I/2 AX
6 x 107

4 27 -1/2 AZ
-6 x 107

4 1/._ AX
28 6 x 107

5 29 1/2 A._
6 x 107

-1/2 AZ
-6 x 107
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9

9

I0

10

II

II

12

12

13

16

17

2O

1

4

9

12

5

5

8

8

5

ROW

5

6

6

7

7

8

Table 2.

COLUMN

30

29

31

30

32

31

33

34

33

35

34

36

35

36

17

20

21

24

37

38

39

40

37

39

38

40

41

Non-zero Elements of the Upper Triangle of the Sampled Coupled
System Unrestrained Stiffness Matrix, Contd.

NUMERIC VALUE

-6 x 10_-_

6 x 107

-6 x 107

6 x 107

-6 x 107

6 x 107

-6 x 107

-8 x 107

6 x 107

-6 x 107

6 x 107

-6 x l07

6 x 107

6 x 107

_10 8

-10 8

-108

-108

-7.8 x 108

-7.8 x 108

-7.8 x 108

-7.8 x 108

-0. 711 x 106

-0.711 x 106

-0.711 x I06

-0.711 x 106

-1. 0665 x 106

ALGEBRAIC VALUE

-1/z Az

1/2A_

-1/2 A_

1/2AJ

-1/2 Az

I/2AX

-1/2A_

-1/2 A_

1/2 A_

-1/2 A_

1/2 AZ

-1/2 AZ

1/2 Ax

1/2 A_

-D

-D

-D

-D

-E

-E

-E

-E

-B

-B

-B

-B

-1/2 BS
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Table 2.

ROW

5 43

8 42

8 44

17 37

17 39

20 38

20 40

17 41

17
43

20
42

20 44

37 41

38
42

39 43

4O
44

8
45

8
47

2O
46

32 45

32 47

45 45

45 47

46 46

47 47

COLUMN

Non-zero Elements of the Upper Triangle of the Sampled Coupled
System Unrestrained Stiffness Matrix, Contd.

ALGEBRAIc VALUE NUMERIC VALUE
t/2 BS

1, 0665 x 106
-1/2 Bs

-1.0665 x 10 6
1/2 Bs

1.0665 × 10 6
1/2 ss

1. 0665 x 10 6
-1/2 Bs

-1. 0665 x 10 6
1/2 BS

I. 0665 x 10 6
-1/2 Bs

-1. 0665 x 10 6
1/6 BS 2

1. 0665 x 10 6

1/6 BS2

1. 0665 x 10 6

1/6 Bs _
1. 0665 × 106

1/6 Bs 2
i. 0665 x 10 6

1/2 Bs
1. 0665 × 106

1/2 BS
I. 0665 x 106

-i/2BS
-I. 0665 × 10 6

-1/2 BS

-1.0665 x 10 6

-A

-12 x 10 6
-1/2 A,_

-6 × 107
-C

-10 8

1/2 AX
6 ×10 7

1/6 A_ 2
2 Xl08

A
12 x 10 6

1/2 AX
6 x i0 7

C

5.92 x 10 7
1/3 Ax 2

4 x 108
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Thenon-zero elementsof the matrix are listed in Table 2. For simplicity, the

following substitutions are made:

12 EI_ = A =12 x106
L 3

12 EIxx
=B =0.711 x106

S 3

vertical beam torsion spring rate = C = 5.92 x 107 n/m

lateral torsion spring rate = D = 108 n-m/rad

ball joint translational spring rate = E = 7.8 x 108 n/m

Eigenvalues and eigenvectors are found by operation on the reduced stiffness

matrix and the associated diagonal mass-inertia matrix.

The only quantities remaining to be determined for use in the mode synthesis

equations are the elastic component modes. These data were obtained readily, as

the component systems are elementary, and are given below.

a. Elastic bending modes of outer tanks:

Mode 1 2

2
_¢ 416.18 2543.4

/_ 12975 21144

X 1 1 0. 6667

X 2 -0.5 -I. 0

X 3 -0.5 1.0

X. 1 -0.6667
4

b. Elastic torsion modes of outer tanks.

Mode 1 2 3

2
3700 11100 14800

]_ 24000 24000 48 000

e 1.0 1.0 1.0
1
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O2 0.5

03 -0.5

4 -1.0

c. Elastic bending modes of center tank.

Mode 1

2
00 5. 299

9035.1

X 1 1.0

X 2 0.65377

X 3 0. 33546

X 4 0.09552

d. Elastic torsion modes of center tank:

2

195.42

12064

1.0

-0.30099

-0.84158.

-0. 43767

Mode 1 2

2
583.73 5524.3

30399 25048

01 1.0 1.0

O2 O. 92112 O. 25347

e3 O. 69692 -0.87151

e4 o.36277 -0. 69527

-0.5

-0.5

1.0

-I.0

1.0

-I.0

3

1615.4

18518

0.81183

-0.98959

O. 57622

1.0

4

5706.7

6237

-0. 11309

0.22209

-0. 40665

1.0

3

12976

19791

1.0

4

17916

11611

-0.13856

-0.75347 0.19692

0.13544 -0.42112

0. 54938 1.0

The introduction of these data into the [TS 7 matrix developed above permits

the solution of Equation 29 for eigenvalues and eigenvectors.

A comparison of the results of both techniques shows near perfect agTeement.

The discrepancy in the lowest frequency is but 0.49 percent and in the second fre-

quency, 0.056 percent. The remaining frequencies show even better ag-reement.

Theoretically, the _vo solutions should be equivalent; close examination of the data

indicates the existing error results from numerical accuracy limitations of the
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digital computer used, generated by the choice of a comparatively high value for the

ball joint lateral stiffness. A stiffuess of a magnitude more like the other stiffness-

es of the system would have resulted in a problem with less numerical disparity and,

consequently, greater agreement in frequency.

For comparative purposes, the frequencies and mode shapes for the first five

modes are given in the following list for each technique.
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